Генкин Б. И.

ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Учебное пособие. – Санкт-Петербург: http://auditori-um.ru, 2012

3.4. Постулаты Эйнштейна. Преобразования Лоренца

Теория электромагнитных волн Максвелла (1865 г.) предсказывала, что свет, который рассматривается в этой теории как электромагнитные волны, должен распространяться в вакууме с некоторой фиксированной скоростью c. Волны — это процесс распространения колебаний, поэтому необходимо было ответить на вопрос, колебания какого материального объекта распространяются в виде электромагнитных волн. Кроме того, необходимо было указать систему отсчета, относительно которой измеряется скорость c. В связи с этим было введено понятие **светоносного эфира**.

Под светоносным эфиром понимали некую гипотетическую абсолютно неподвижную субстанцию, которая заполняет все мировое пространство. Предполагалось, что в эфире распространяются электромагнитные, в частности — световые, волны, причем эфир не препятствует движению тел сквозь него. Предполагалось также, что наблюдатели, которые движутся относительно эфира с различными скоростями, должны измерять различную скорость света. Но скорость света относительно эфира должна оставаться неизменной.

В 1887 г. американские ученые Майкельсон и Морли поставили эксперимент, в котором сравнивалось значение скорости света, измеренное в направлении движения Земли, с её значением, измеренным в перпендикулярном направлении. При планировании эксперимента согласно представлениям классической механики предполагалось, что движение Земли относительно эфира приведет к различию измеряемых скоростей, которое интерференционный прибор Майкельсона был в состоянии зафиксировать.

Однако обнаруженное различие оказалось на два порядка меньше, чем предсказывала теория, причем наблюдались случайные изменения интерференционной картины в течение суток. Результаты опыта Майкельсона-Морли были истолкованы как принципиальная невозможность обнаружения движения Земли относительно эфира. То есть равенство скоростей света в направлении движения Земли и в перпендикулярном направлении было принято как экспериментальный факт.

С 1887 г. по 1905 г. были предприняты различные попытки объяснить результаты опыта Майкельсона-Морли. Нидерландский ученый Х. Лоренц предложил гипотезу, согласно которой все тела сокращаются в направлении своего движения, а все часы замедляют ход. Исходя из своей теории, Лоренц вывел новые преобразования координат и времени (преобразования Лоренца) относительно которых уравнения Максвелла являются инвариантными.

В 1905 г. Эйнштейн предложил теорию, которая была принята физическим сообществом. Эта теория была названа специальной теорией относительности (СТО) или релятивистской механикой (от латинского слова relativus — относительный). Специальной теория называется потому, что в ней рассматриваются только инерциальные системы отсчета. Теория Эйнштейна, разработанная для неинерциальных систем отсчета, называется общей теорией относительности.

Специальная теория относительности базируется на двух постулатах Эйнштейна.

Постулат 1. Принцип относительности

Все законы природы одинаковы во всех инерциальных системах отсчета.

Постулат 2. Принцип постоянства скорости света

Скорость света в вакууме одинакова во всех инерциальных системах отсчета и не зависит от движения источников и приемников света.

Первый постулат Эйнштейна, по сути, является динамическим принципом относительности. Однако Эйнштейн совместил динамический принцип относительности с кинематическим и потребовал, чтобы все физические соотношения были инвариантны относительно преобразований координат и времени при переходе от одной инерциальной системы отсчета к другой.

Смысл второго постулата Эйнштейна состоит в том, что скорость света в вакууме $c \approx 3 \cdot 10^8$ м/с является фундаментальной физической константой, которая определяет предельную скорость распространения сигнала в нашей Вселенной. Эта предельная скорость одинакова во всех инерциальных системах отсчёта.

Исходя требования инвариантности физических законов и постулата о постоянстве скорости света, Эйнштейн получил пространственно-временные преобразования, которые совпали с преобразованиями Лоренца.

Рассмотрим, как и ранее, две инерциальные системы отсчёта: K и K', оси которых параллельны, причём K'-система движется относительно K-системы вдоль оси Ox со скоростью \vec{V} . Пусть некоторое физическое явление наблюдается одновременно из обеих систем отсчёта (см. рис. 3.2). Ниже приведены преобразования Лоренца для данного частного случая.

Преобразования Лоренца при переходе из K'-системы в K-систему:

$$x = \frac{x' + Vt'}{\sqrt{1 - V^2/c^2}}; \quad y' = y; \quad z' = z; \quad t = \frac{t' + x'V/c^2}{\sqrt{1 - V^2/c^2}}; \tag{3.9}$$

Преобразования Лоренца при переходе из K-системы K'-систему:

$$x' = \frac{x - Vt}{\sqrt{1 - V^2/c^2}}; \quad y = y'; \quad z = z'; \quad t' = \frac{t - xV/c^2}{\sqrt{1 - V^2/c^2}}; \tag{3.10}$$

Анализ преобразований Лоренца позволяет сделать выводы, изменяющие традиционные представления о свойствах пространства и времени.

Выводы из преобразований Лоренца

- 1. Время течет неодинаково в различных системах отсчета: $t \neq t'$.
- 2. Пространство и время неразрывно связаны между собой и образуют единую физическую реальность **пространство-время**: момент времени, когда наблюдается некоторое событие, зависит от местоположения (от координат) данного события.
- 3. Нельзя использовать системы отсчета, которые движутся со скоростями, равными скорости света в вакууме: знаменатель двух соотношений из (3.9) или (3.10) при V=c обращается в нуль.
- 4. Физические тела не могут двигаться со скоростями, большими скорости света в вакууме: подкоренные выражения в (3.9) или (3.10) при V > c становятся отрицательными.