Генкин Б. И.

ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Учебное пособие. – Санкт-Петербург: http://auditori-um.ru, 2012

1.3. Ускорение точки

Во многих случаях скорость точки не остается постоянной. Скорость – вектор, поэтому, даже если модуль скорости не меняется, но изменяется направление движения точки, то вектор скорости является переменной величиной. Для характеристики изменения скорости используется физическая величина, называемая ускорением точки.

Ускорение точки — вектор, характеризующий изменение модуля и направления скорости точки.

Для вывода ускорения рассмотрим изменение скорости точки за некоторый малый промежуток времени Δt (рис. 1.7).

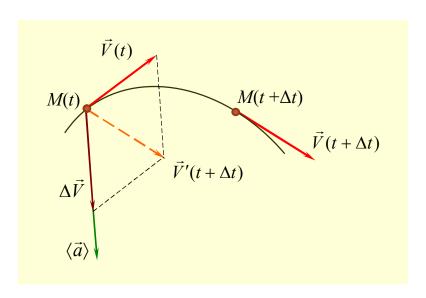


Рис. 1.7. Ускорение точки

За время Δt вектор скорости изменяется на величину

$$\Delta \vec{V} = \vec{V}(t + \Delta t) - \vec{V}(t). \tag{1.11}$$

Величину $\Delta \vec{V}$ называют **приращением скорости** точки за промежуток времени Δt . Чтобы построить вектор $\Delta \vec{V}$ на чертеже, перенесем вектор скорости $\vec{V}(t+\Delta t)$ параллельно самому себе в точку M(t). Получим вектор $\vec{V}'(t+\Delta t)$ (см. рис. 1.7).

Используя правило параллелограмма, построим вектор $\Delta \vec{V}$. Согласно данному построению вектор $\Delta \vec{V}$ может быть направлен только в сторону вогнутости траектории.

Средним ускорением $\langle \vec{a} \rangle$ точки называют вектор, равный отношению приращения $\Delta \vec{V}$ скорости точки к промежутку времени Δt , за который произошло это приращение:

$$\langle \vec{a} \rangle = \frac{\Delta \vec{V}}{\Delta t} \,. \tag{1.12}$$

Вектор $\langle \vec{a} \rangle$ направлен так же, как вектор $\Delta \vec{V}$, т.е. в сторону вогнутости траектории.

Среднее ускорение, как и средняя скорость, зависит от выбора промежутка времени Δt . Для получения объективной характеристики изменения скорости перейдем в (1.12) к пределу при Δt , стремящимся к нулю.

Вектор, равный пределу среднего за время Δt ускорения при Δt , стремящимся к нулю, является ускорением точки в момент времени t:

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{V}}{\Delta t}.$$
 (1.13)

Величина, определяемая соотношением (1.13) равна производной функции $\vec{V}(t)$ по ее аргументу t.

Ускорение точки равно производной вектора скорости точки по времени:

$$\vec{a} = \frac{d\vec{V}}{dt} = \dot{\vec{V}} \ . \tag{1.14}$$

Поскольку скорость точки равна первой производной радиус-вектора по времени, ускорение равно второй производной радиус-вектора по времени:

$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} = \ddot{\vec{r}} \,. \tag{1.15}$$

При уменьшении величины Δt плоскость, проведенная через векторы $\vec{V}(t)$ и $\vec{V}'(t+\Delta t)$, поворачивается и в пределе при Δt , стремящимся к нулю, совпадает с так называемой **соприкасающейся плоскостью**. Соприкасающейся является касательная плоскость, имеющая с данной кривой в данной точке наибольший порядок соприкосновения.

Ускорение \vec{a} в любой момент времени лежит в соприкасающейся с траекторией плоскости и всегда направлено в сторону вогнутости траектории.

На рисунке 1.8 показан пример расположения соприкасающейся плоскости, когда точка движется по поверхности цилиндра, описывая винтовую линию.

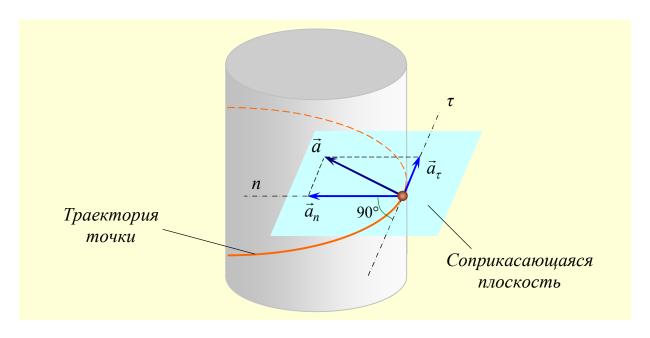


Рис. 1.8. Направление ускорения точки, движущейся по винтовой линии

Как и любой вектор, ускорение можно разложить на составляющие по осям координат:

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k} \,, \tag{1.16}$$

где a_x , a_y , a_z — проекции ускорения на оси координат. Продифференцировав (1.8) по времени и сравнив полученное выражение с (1.16), приходим к выводу: проекции ускорения на оси координат равны производным соответствующих проекций скорости по времени:

$$a_x = \dot{V}_x$$
, $a_y = \dot{V}_y$, $a_z = \dot{V}_z$. (1.17)

Т.к. проекции скорости равны первым производным координат по времени, то проекции ускорения равны вторым производным соответствующих координат по времени:

$$a_x = \ddot{x} , a_y = \ddot{y} , a_z = \ddot{z} .$$
 (1.18)

Модуль ускорения равен корню квадратному из суммы квадратов его проекций:

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2} \ . \tag{1.19}$$

Направление ускорения аналитически можно задать с помощью углов, которые вектор \vec{a} составляет в данный момент времени с направлениями осей координат. Для определения указанных углов используют **направляющие косинусы**:

$$\cos \theta_x = \frac{a_x}{a}$$
; $\cos \theta_y = \frac{a_y}{a}$; $\cos \theta_z = \frac{a_z}{a}$,

где θ_x , θ_y , θ_z – углы, которые вектор \vec{a} составляет с направлениями осей Ox, Oy и Oz, соответственно.

Единица ускорения в СИ: $[a] = 1 \text{ м/c}^2$.